
Coordinating Construction of Truss Structures
using Distributed Equal-mass Partitioning

Seung-kook Yun, Mac Schwager and Daniela Rus

Abstract This paper presents a decentralized algorithm for the coordinated assem-
bly of 3D objects that consist of multiple types of parts, using a networked team of
robots. We describe the algorithm and analyze its stability and adaptation properties.
We instantiate the algorithm to building truss-like objects using rods and connectors.
We implement the algorithm in simulation and show results for constructing 2D and
3D parts. Finally, we discuss briefly preliminary hardware results.

1 Introduction

We wish to develop cooperative robot systems for complex assembly tasks. A typ-
ical assembly scenario requires that parts of different types get delivered at the lo-
cation where they are needed and incorporated into the structure to be assembled.
We abstract this process with two operations: (1) tool and part delivery carried out
by deliverying robots, and (2) assembly carried out by assembling robots. In this
paper, we consider how a team of robots will coordinate to achieve assembling the
desired object. Tool and part delivery requires robots capable of accurate navigation
between the part cache and the assembly location. Assembly requires robots capable
of complex grasping and manipulation operations, perhaps using tools. Different as-
sembling robots work in parallel on different subcomponents of the desired object.
The delivering robots deliver parts (of different types) in parallel, according to the
sequence in which they are needed at the different assembling stations. We consider
the case where the parts are (a) rods of different lengths and (b) connectors for con-
necting the rods into truss-structured objects. The robots can communicate locally
to neighbors. The delivering robots have the ability to find the correct part type in
the part cache, pick it up, and deliver it to the correct spot for the assembling process
requesting the part, and return to the part cache for the next round of deliveries. The

Seung-kook Yun, Mac Schwager and Daniela Rus
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA
e-mail: yunsk@mit.edu, schwager@mit.edu, rus@csail.mit.edu

1

2 Seung-kook Yun, Mac Schwager and Daniela Rus

assembling robots have the ability to receive the part from a delivering robot and
incorporate it into the assembly.

Fig. 1 Concept art for construction of a truss struc-
ture by mobile delivering robots and truss-climbing
assembling robots. Reprinted with permission from
Jonathan Hiller, Cornell University, USA.

We assume that the target object
is given by a material-density func-
tion which encodes the object geom-
etry and is known to all the robots.
The construction process starts by
a “coverage”-like process during
which the assembling robots partition
the target structure adaptively into
sub-assemblies, such that each robot1
is responsible for the completion of
that section. To achieve this division,
the robots locally compute a Voronoi
partition, weighted by the mass of all
the rods contained in the partition,
and perform a gradient descent algo-
rithm to balance the mass of the re-
gions. The delivery robots also know
the density function describing the
target structure and the location of the parts. Each delivering robot carrying a part
enters the assembling region and delivers the part to the region with the highest de-
manding mass. That is, the robot asks each assembling robot within communication
range what is the current mass of the structure they have created and selects the site
of the least completion. This ensures global and local balance for part delivery.

We describe decentralized control algorithms for the partition, part delivery, and
assembling steps. The algorithms are inspired by the approach in [2, 9, 7] and use
equal-mass partitioning as the optimization criterion. The algorithms rely on local
information only (e.g. neighbors exchange information about their local mass). The
task allocation and part delivery algorithms are provably stable. They are adaptive
to the number of delivering robots and assembling robots as well as to the amount
of source material. We implemented these algorithms in simulation. Several 2D and
3D truss-structures were created using our algorithms. We have started a hardware
implementation using iCreate robots extended with Meraki communication and a
CrustCrawler 4-dof robot arm. The part delivery algorithm has been implemented
on these robots to demonstrate the coordination infrastructure of the system and the
correctness of the delivery algorithm. Assembly execution is under development.

1.1 Related Work

This work combines distributed coverage and robotic construction. We follow the
notion of locational optimization developed by Cortes et al. [2], who introduced
distributed coverage with mobile robots. The same optimization criteria was used
in a distributed coverage controller for real-time tracking by Pimenta et al. [8]. In

1 The robot represents all the skills needed for each required assembly step; in some cases multiple
robots will be needed, for example the connection of two rods with a screw is done by three robots,
one robot holding each rod, and one robot placing the connector.

Coordinating Construction of Truss Structures 3

our previous work, Schwager [9] used adaptive coverage control in which networked
robots learn a sensory function while they are controlled for the locational optimiza-
tion. This research inherits the distributed coverage concept, and pursues equal-mass
partitioning in which every networked robot is controlled to have the same amount
of construction (in our case, truss elements and connectors) to be built, rather than
optimal sensing locations. Pavone et al. [7] have been independently working on
equitable partitioning by the power diagram.

Algorithms and hardware have been developed for manipulator robots that climb
and build a truss structure. SM2, a truss-walking inspection robot, was developed for
space station trusses [6]. Skyworker demonstrated truss-like assembly tasks [10].
Werfel et al. [11] introduced a 3D construction algorithm for modular blocks. Our
previous work on truss assembling robots includes Shady3D [4, 5, 1] that utilizes a
passive bar with active communication and may include itself in a truss structure,
and is controlled by locally optimized algorithms. We also proposed a centralized
optimal algorithm to reconfigure a given truss structure to a target structure [3].
This work introduces a framework in which robots are specialized as delivery and
assembling robots, distributed algorithms control the assembly of a structure with
multiple kinds of source materials.

2 Problem Formulation

We are given a team of n robots, k of which are specialized as part delivering robots
and the rest are specialized as assembling robots. The robots can communicate lo-
cally with other robots within their communication range. The robots are given a
target shape represented as a mass-density function φt. We wish to develop a decen-
tralized algorithm that coordinates the robot team to deliver parts so that the goal
assembly can be completed with maximum parallelism.

Suppose for now that the robots move freely in an Euclidean space (2D and 3D).
This assumption makes sense when the robots move in the plane to achieve a planar
assembly. However, for 3D assemblies, factors such as gravity and connectivity of
structure, as well as 3D motion for the robots, must be considered. We will general-
ize in Section 5.

Algorithm 1 shows the main flow of construction in a centralized view. In
the first phase, assembling robots spread in a convex and bounded target area
Q ⊂ RN (N = 2, 3) which includes the target structure. They find placements
using a distributed coverage controller which assigns to each robot areas of the tar-
get structure that have approximately the same assembly complexity. In the second
phase the delivering robots move back and forth to carry source components to the
assembling robots. They deliver their components to the assembling robot with max-
imum demanding mass. The demanding mass is defined as the amount of a source
component required for an assembling robot to complete its substructure. In this
work, the source components include two types: truss elements and connectors. The
truss elements are rods and they may be of different lengths. Details of the demand-
ing mass for each type of the source components are presented in Section 4.1. After
an assembling robot obtains a component from a delivering robot, it determines the
optimal placement for this component in the overall assembly and moves there to

4 Seung-kook Yun, Mac Schwager and Daniela Rus

assemble the component. The assembly phase continues until there is no source
component left or the assembly structure is complete.

Algorithm 1 Construction Algorithm
1: Deploy the assembling robots in Q
2: Place the assembling robots at optimal task locations in Q (Section 3)
3: repeat
4: delivering robots: carry source components to the assembling robots (Section 4.2)
5: assembling robots: assemble the delivered components (Section 4.1)
6: until task completed or out of parts

2.1 Example

Figure 2.1(a) shows a construction system with 4 assembling robots. Intuitively,
robot 1 and robot 4 move towards the other robots in order to expand their partition,
whereas robot 2 moves away from the other robots because it has the largest area.
The moving direction of the robots is determined by combining the normals to the
Voronoi edges. Figure 2.1(b) shows the red delivering robot carrying a red truss
element driven by the gradient of the demanding mass. The yellow region denotes
the target density function φt. The hashed region denotes completed assembly. The
demanding mass of a region can be thought of as the difference between the area of
yellow regions and the area of hashed regions.

Suppose a delivering robot is in the region of robot 4. Among its neighbors (robot
2 and 3) the maximum demanding mass is with robot 3. Thus the delivering robot
moves to robot3. The delivering robot finds that robot 1 has the maximum demand-
ing mass among robot 3’s neighbors, therefore it advances to robot 1 and delivers
the truss component. Following the maximum demanding mass gives a local balance
for the target structure.

3 Task Allocation by Coverage with Equal-mass Partitions

This section describes a decentralized equal-mass partitioning controller which is
inspired by distributed coverage control [2, 9]. The algorithm allocates to each as-
sembling robot the same amount of assembly work, which is encoded as the same
number of truss elements. This condition ensures maximum parallelism. We con-
tinue with a review of the key notation in distributed coverage, then give the mass
optimization criteria and end the section with the decentralized controller.

Coordinating Construction of Truss Structures 5

Q

p1 p2

p3

l12

l13

l23

p4

l24

l34

(a)

1
4t

VMΔ =
2

0t
VMΔ =

3
2t

VMΔ =
4

1t
VMΔ =

(b)

Fig. 2 Example of the equal-mass partitioning and delivery by the gradient of the demanding mass.
4 mobile manipulators (assembly robots) are displayed in a convex region Q that includes the A-
shaped target structure. The yellow region has high density φt. The mass of a robot is the size of
the total yellow region in its partition (Voronoi region.) pi(i = 1, 2, 3) denotes the position of the
assembling robots and the red-dotted lines lij are shared boundaries of the partitions between two
robots. ∆Mt

Vi
is the demanding mass.

3.1 Equal-mass partitioning

Suppose n assembling robots cover region Q with a configuration {p1, ...,pn},
where pi is the position vector of the ith robot. Given a point q in Q, the nearest
robot to q will execute the assembly task at q. Each robot is allocated the assembly
task that included its Voronoi partition Vi in Q.

Vi = {q ∈ Q| ‖q− pi‖ ≤ ‖q− pj‖ ,∀j 6= i} (1)

The target density function φt is the density of truss elements, and it is fixed during
the construction phase. Given Vi, we define its mass property as the integral of the
target density function in the area.

MVi
=

∫
Vi

φt(q)dq (2)

We wish for each robot to have the same amount of assembly work. We call this
equal-mass partitioning. The cost function can be modeled as the difference among
the masses of neighboring robots:

H =
1
4

n∑
i=1

∑
j∈Ni

(MVi −MVj)
2, (3)

where Ni is a set of neighbor robots of the ith robot.
Using the cost function in (3), we have developed a decentralized controller that

guaranteesH converges to a local minimum.

6 Seung-kook Yun, Mac Schwager and Daniela Rus

3.2 Controller with Guaranteed Convergence

We wish for the controller to continuously decrease the cost function: Ḣ ≤ 0, t > 0.
DifferentiatingH yields

Ḣ =
n∑

i=1

∂H
∂pi

ṗi. (4)

Each term of the partial derivatives is

∂H
∂pi

=
∂

∂pi

1
4

∑
j∈Ni

(MVi −MVj)
2 +

1
4

∑
j∈Ni

(MVj −MVi)
2


=

1
2
∂

∂pi

∑
j∈Ni

(MVi
−MVj

)2 =
∑
j∈Ni

(MVi
−MVj

)(
∂MVi

∂pi
−
∂MVj

∂pi
) (5)

where

∂MVi

∂pi
=

∑
j∈Ni

Mij ,
∂MVj

∂pi
= −Mij (6)

Mij is computed along the sharing edges (sharing faces in 3D) lij between Vi and
Vj as in [8]:

Mij =
∫

lij

φt(q)
∂qlij

∂pi
nlij

dq =
∫

lij

φt(q)
q− pi

‖pi − pj‖
dq (7)

where nlij is a normal vector to lij as

lij = Vi ∩ Vj , nlij
=

pj − pi

‖pi − pj‖
. (8)

We can rewrite equation 4 as

Ḣ =
n∑

i=1

∑
j∈Ni

(MVi
−MVj

)(
∂MVi

∂pi
−
∂MVj

∂pi
).ṗi (9)

Let J i denote the partial derivative term ∂H
∂pi

.

J i =
∑
j∈Ni

(MVi −MVj)(
∂MVi

∂pi
−
∂MVj

∂pi
) (10)

Note that J i is a vector. Given a velocity control for each robot, the decentralized
controller that achieves task allocation is given by the control law:

Coordinating Construction of Truss Structures 7

ṗi = −k
4

J i

‖J i‖2 + λ2

∑
j∈Ni

(MVi −MVj)
2, (11)

where k is a positive control gain and λ is a constant to stabilize the controller even
around singularities where ‖J i‖2 = 0.

Note that all the equations can be computed in a distributed way, since they only
depend on the variables of the neighboring robots.

Theorem 1. The proposed controller guarantees that H converges to either a local
minimum or a global minimum.

Proof. The proposed control input ṗi yields

Ḣ = −k
4

n∑
i=1

‖J i‖2

‖J i‖2 + λ2

∑
j∈Ni

(MVi −MVj)
2. (12)

By rearranging and simplifying the terms, we can bound Ḣ

Ḣ ≤ −k
‖J‖2min

‖J‖2min + λ2
H, (13)

where

‖J‖2min = min
i
‖J i‖2 . (14)

Since k and H are positive, Ḣ is always negative. Therefore, the controller keeps
the cost function decaying unless all the J i are empty vectors (relocating the robots
does not change the cost function.) Thus eitherH goes to zero (global minimum) or
all J i converge to zero (local minimum.) Note that if every J i is a non-zero vector,
H converges exponentially fast. 2

4 Delivery and Assembly Algorithms

Once the assembling robots are in place according to the equal-mass partitioning
controller, construction may begin. State machines drive the delivering robots and
the assembling robots. During construction we wish to distribute the source compo-
nents (truss elements and connectors) to the assembling robots in a balanced way.
Global balance is asymptotically achieved by a probabilistic target selection of de-
livering robots that uses φt as a probability density function. For local balance, the
delivering robots are driven by the gradient of demanding mass defined as the re-
maining structure to be assembled by the robot. Robots with more work left to do
get parts before robots with less work left. Each assembling robot waits for a new

2 Pavone et. al [7] also developed equitable partitioning using power diagrams that are weighted
generalized Voronoi diagrams. They used a different cost function as the average of inverse of the
masses. They targeted a different application in the space of the multi-vehicle routing.

8 Seung-kook Yun, Mac Schwager and Daniela Rus

truss element or connector and assembles it to the most demanding location in its
Voronoi region. Therefore, construction is purely driven by the density functions
regardless of the amount of the source components and it can be done without an
explicit drawing of the target structure. We ensure that all the processes of the con-
trollers work in a distributed way and each robot needs to communicate only with
neighbors. Details of the control algorithms are explained next.

4.1 Assembly Algorithm

WAITING

MOVINGASSEMBLING

IDLE

construction startsno more spot to fill in

A source material
is delivered

reached the target point

the delivered material
has been assembled

ToSOURCE

ToTARGETToASSEMBLY

IDLE

construction startsno more material

obtained
a source material

reached the target point

passed the material
to an assembly robot

Fig. 3 The state machine for an assembling robot. Each
assembling robot waits for the delivery of a source com-
ponent, moves the component to the optimal spot and
adds it to the structure. The robot’s task is complete
when there is no demanding mass left.

Each assembling robot operates
using a state machine as shown in
Figure 3. The robot has the fol-
lowing states:

• IDLE
• WAITING: waiting for a new

component
• MOVING: moving to the opti-

mal location to add the part
• ASSEMBLING: adding the

component to the assembly

Each robot has a graph repre-
sentation Gi = (Ri, Ei) of the
already built substructure. The
graph is composed of sets of
nodes and edges in the Voronoi
region. For simplicity of exposi-
tion, we assume truss elements of
two sizes: the unit-box size, and
the unit box diagonal. The extension to multiple sizes is trivial. We design the den-
sity function according to a grid. The unit length of the grid is the length of the
truss element. Vertices of the grid have density values equal to the number of truss
elements at the vertex. The density of the intermediate points in the space is interpo-
lated. The interpolated value is used in the coverage implementation only. We can
generalize this cost function to be a continuous function that encodes the geometry
of the object. The demanding mass is defined uniquely for each component type. As
for a truss element, the demanding mass ∆M t

Vi
is computed as:

∆M t
Vi

=
∫

Vi

φt(q)dq−
∫

Vi

ρ(q)dq, (15)

where ρ(q) is the density function of the built structure, which increases as a robot
assembles truss elements. Note φt(q) of the target shape is fixed. Therefore, a big-
ger demanding mass means that more elements should be included in that area. The
demanding mass for connectors ∆M c

Vi
is the number of required connectors Φc for

the current structure Gi. Note that ∆M c
Vi

is a function of φ(q). The demanding
masses drive a delivering robot according to gradients as in (Section 4.2). If a struc-

Coordinating Construction of Truss Structures 9

ture is composed of other components, we can define the demanding mass for each
material.

WAITING

MOVINGASSEMBLING

IDLE

construction startsno more spot to fill in

A delivery robot will
pass a source material

reached the target point

the delivered material
has been assembled

ToSOURCE

ToTARGETToASSEMBLY

IDLE

construction startsno more material

obtained
a source material

reached the target point

passed the material
to an assembly robot

Fig. 4 The state machine for a delivering robot. A
delivering robot repeatedly passes source components
from the source location to an assembling robot.
The initialization of construction causes the delivering
robots to start moving. The robots finish working when
there is no more source material left at the source loca-
tion or the assembly is complete.

Algorithm 2 shows the de-
tails of the state machine. When
construction starts, an assembling
robot initializes the parameters
R,E, ρ, Φc and changes its state
to WAITING. Once a new truss
element is delivered, the robot
finds the optimal place to add it to
the structure using Algorithm 3.
Since we want the structure to
gradually grow, the optimal edge
is chosen among a set of edgesE1

that are connected toG. LetE2 be
a set of edges that have maximum
demanding mass in E1. The de-
manding mass of an edge can be
computed as the sum of masses of
two nodes defining the edge. Each
node of the edges in E2 should
have a density value greater than
the threshold preventing the robot
from assembling the component outside the target structure. In order to achieve a
spreading-out structure, priority is given to unconnected edges. If no such edge ex-
ists, we choose another seed edge that is not connected to G and has the maximum
demanding mass. This jump is required in case that the robot covers substructures
which are not connected to each other. If the delivered material is a connector, the
optimal location is a node v ∈ Φc that is connected to the largest number of edges in
E. The state machine sets a target location t according to the optimal location and
changes the state to MOVING. In the MOVING state, an assembling robot moves
to the target location t and changes the state to ASSEMBLING when it arrives. Fi-
nally, a robot assembles the delivered material and updates the parameters. It adds a
node of the optimal edge to Φc if the node /∈ Φc and is connected to other edges. If
the material is a connector, the robot removes the node from Φc. The state switches
to WAITING again.

4.2 Delivery Algorithm

delivering robots operate by a state machine as shown in Figure 4. Each robot has
the following states:

• IDLE
• ToSOURCE: moving to get a new element
• ToTARGET: moving to a picked point at the target area Q
• ToASSEMBLY: delivering the element to an assembling robot

10 Seung-kook Yun, Mac Schwager and Daniela Rus

Algorithm 2 Control Algorithm of assembling robots

STATE: IDLE
1: R = ∅, E = ∅
2: ρ(q) = 0, Φc = ∅
3: state=WAITING

STATE: WAITING
4: if truss delivered then
5: e=findOptimalEdge(R,E, φt, ρ) (Alg. 3)
6: if e 6= ∅ then
7: t = q(node1(e)+node2(e))/2
8: state=MOVING
9: else

10: state=IDLE
11: end if
12: end if
13: if connector delivered then
14: v ← Φc

15: t = qv

16: state=MOVING
17: end if

STATE: MOVING
18: if reached t then
19: state=ASSEMBLING
20: else
21: move to t
22: end if
STATE: ASSEMBLING
23: assemble the material
24: if the material = truss then
25: update ρ(e)
26: if node2 ∈ R and nodei /∈ Φc then
27: Φc ← nodei

28: end if
29: E ← e
30: R← {node1(e), node2(e)}
31: end if
32: if the material = connector then
33: Φc = Φc − {v}
34: end if
35: state=WAITING

Algorithm 3 Finding the Optimal Edge to Build
1: E1 = ∅, E2 = ∅, E3 = ∅
2: if E1 = ∅ then
3: eopt = argmaxe(φt(e)− ρ(e)) ∩ (φt(e) > ∆φthreshold)
4: else
5: E1 ← e, (e /∈ E,node(e) ∈ R)
6: E2 ← argmaxe∈E1

(φt(e)− ρ(e)) ∩ (φt(e) > ∆φthreshold)
7: if E2 = ∅ then
8: eopt = argmaxe(φt(e)− ρ(e)) ∩ (φt(e) > ∆φthreshold)
9: else

10: E3 ← e, (e ∈ E2, {node1(e), node2(e)} ∈ {Ri, Rj,j∈Ni
})

11: if E3 6= E2 then
12: eopt= random(E2 − E3)
13: else
14: eopt= random(E2)
15: end if
16: end if
17: end if
18: return eopt

Algorithm 4 describes the details of the state machine.3 Given an initially empty
state, a delivering robot changes its state to ToSOURCE and moves to S (the source
location). At S , the robot picks a source component if one exists. Otherwise, it stops
working. The state is switched to ToTARGET and the robot moves to a randomly
chosen point inQ following the probability density function φt. Therefore, materials
are more likely to be delivered to an area with a denser φt. After arrival at the

3 The assembly and the delivery algorithms provably guarantee completion of the correct target
structure. In the interest of space, the proof is omitted. Empirical results in Section 6 shows cor-
rectness of the algorithms since all the simulations with different initial conditions end up with the
same final structure.

Coordinating Construction of Truss Structures 11

chosen point, the robot changes the state to ToASSEMBLY and moves following
the gradient of the demanding mass ∆MVi of assembling robots. Delivery by the
gradient of the demanding mass yields a locally balanced mass distribution. Note
that the global balance is maintained by the randomly chosen delivery with density
φt. When the robot meets the assembling robot with the maximum demanding mass,
it checks if the state of the assembling robot is WAITING and passes the material.
The state changes to ToSOURCE and the robot repeats delivery.

Algorithm 4 Control Algorithm of delivering robots

STATE: IDLE
1: state = ToSOURCE
2: t = S

STATE: ToSOURCE
3: if reached t then
4: if source material remains then
5: pick a material element
6: t = q,q ∼ φt(q)
7: state = ToTARGET
8: else
9: state = IDLE

10: end if
11: else
12: move to t
13: end if

STATE: ToTARGET
14: if reached t then
15: state=ToASSEMBLY
16: else
17: move to t
18: end if
STATE: ToASSEMBLY
19: communicate with robot ri s.t. q ∈ Vi

20: deliveryID = argmax(k=i,j∈Ni)∆MVk

21: t = pdeliveryID

22: if reached t & state of ri = WAITING then
23: pass the material
24: state = ToSOURCE
25: t = S
26: else
27: move to t
28: end if

5 Adaptation

We briefly discuss the adaptative features of the construction algorithm. Proofs, de-
tails and implementation will be in future work.

Theorem 2. Continuous coverage during construction compensates for failure of
robots

In the proposed framework for robotic construction, a failure of an assembling robot
is critical since the robot covers a unique region. Control that uses equal-mass parti-
tioning continuously during the construction makes the remaining robots automati-
cally compensate for the failed assembling robot. The assembling robots reconstruct
the Voronoi regions when the surrounding network of the robots has changed (in
implementation, assembling robots keep contact with the neighbor robots.) The as-
sembling robots also need to update the parameters such as the graph of the built
structure, the demanding mass, etc. The delivering robots achieve this transparently.

Theorem 3. The algorithms are adaptive to construction in order.

12 Seung-kook Yun, Mac Schwager and Daniela Rus

The construction algorithm is also adaptive to a time varying density function. This
property has a nice side-effect: it enables construction in order, with connectivity
constraints in 3D. For example, the robots can build a structure from the ground up
by revealing only part of φt that is connected to the current structure.

Theorem 4. The proposed algorithms can be extended for reconfiguration from an
existing structure.

The goal structure might change after or during construction. The construction al-
gorithm can be to adapt the robots to build a new goal structure from the current
structure. Equal-mass partitioning can be used with difference of the target density
functions, assuming the assembling robot is capable of disassembly. The delivering
robots grab source material from the part of the current structure that is unnecessary
for the new goal structure.

6 Implementation

Algorithm 2, 4 and the equal-mass partitioning were implemented for building 2D
and 3D structures. We use side truss elements and connectors that lie at a single
source location. We have built several structures using these algorithms.

6.1 Building an A-shaped bridge

The first simulation demonstrates the construction of a bridge from a single source
location of trusses and connectors. The density function φt and the final Voronoi
regions resulting from using the equal-mass partitioning controller for 4,6, and 10
assembling robots are shown in Figure 5. We use a discrete system so that φt is
defined at every node (integer points). The unit length is the length of a truss ele-
ment. At an arbitrary point q, φt(q) is interpolated from 4 surrounding nodes by
barycentric interpolation. The interpolation ensures continuity of φ that is required
for the cost function H. The robots are deployed from randomly selected starting
positions. Figure 5 shows that each robot has approximately the same area of the
yellow region. As expected, the masses converge to the same value as shown in Fig-
ure 6(b), and the cost function H approaches zero as in Figure 6(a). A little jitter in
the masses and the cost function graphs comes from discrete numerical integrals.

Figure 7 shows snapshots from the simulation after partitioning. We use 4 robots
for truss delivery and 4 robots for connector delivery. They deliver source materials
which have 250 side truss elements and 150 connectors. The area with high den-
sity is gradually filled with truss elements and connectors. Because the controller
uses equal mass partitioning and the gradient of the demanding mass, the assem-
bling robots maintain almost the same ∆MV all the time. Therefore, each Voronoi
region has a balanced amount of truss elements. Note that the control algorithms
do not depend on the amount of the source truss elements. With fewer elements,
we obtain a thinner structure, while the availability of more truss element yields a
denser structure. At the end of the simulation, the assembling robot that has built
the least amount of the truss component has assembled 58 truss elements while the

Coordinating Construction of Truss Structures 13

0 5 10 15
0

2

4

6

8

10

12

14

16

0 5 10 15
0

2

4

6

8

10

12

14

16

0 5 10 15
0

2

4

6

8

10

12

14

16

Fig. 5 Density function for an A-shaped bridge and coverage by the equal-mass partitioning. The
blue circles are assembling robots. Yellow regions have dense φt.

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5
x 10

7

co
st

 f
u

n
ct

io
n

time
(a)

1 1.5 2 2.5 3 3.5 4
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
x 10

4

M
as

se
s

M
V

time
(b)

Fig. 6 Result from the equal-mass partitioning controller for 4 assembling robots. (a) Cost function
H (b) Masses of four assembling robots

robot with the maximum amount has assembled 63. The robot with the minimum
number of connectors assembled 33 connectors and the robot with the maximum
number assembled 38.

Figure 8 shows the demanding masses for a truss part and a connector. All four
curves are completely overlapped, meaning all the substructures have been balanced
at all time. The demanding mass for a connector oscillates since it depends on the
already built substructure.

6.2 Constructing an Airplane

Figure 9 shows snapshots of building an airplane. 3D grids are used and the target
density functions are given and computed in the grids.

6.3 Experiment

14 Seung-kook Yun, Mac Schwager and Daniela Rus

5 10 15 20 25

2

4

6

8

10

12

14

16

18

20 source
time:0

5 10 15 20 25

2

4

6

8

10

12

14

16

18

20 source
time:400

5 10 15 20 25

2

4

6

8

10

12

14

16

18

20 source
time:1200

5 10 15 20 25

2

4

6

8

10

12

14

16

18

20 source
time:2463

Fig. 7 Snapshots of simulation. Green circles denote assembling robots and red circles denote
delivering robots. The blue line is a truss elements and the black dot is a connector. The blue box
is the source location. The dotted lines in Q are boundaries of the Voronoi regions.

0 5 10 15 20 25
0

50

100

D
em

an
d

in
g

 M
as

se
s

time

Robot 1
Robot 2
Robot 3
Robot 4

(a)

0 5 10 15 20 25
0

1

2

3

4

5

6

D
em

an
d

in
g

 M
as

se
s

fo
r

C
o

n
n

ec
to

r

time

Robot 1
Robot 2
Robot 3
Robot 4

(b)

Fig. 8 (a) Demanding masses for a truss part and (b) a connector. 4 assembling robots and 8
delivering robots are used. The assembly time is set to ten times the velocity. All the graphs are
almost overlapped.

Coordinating Construction of Truss Structures 15

Fig. 9 Snapshots of building an airplane pyramid. There are 10 assembling robots, 20 deliver-
ing robots for truss parts and 10 robots for connectors. 1575 truss parts and 656 connectors are
assembled.

Fig. 10 iRobot platform
with Crust Crawler 4-dof
arm.

We have implemented Algorithm 4 using a team of
robots. The robots are networked using the Meraki mesh
networking infrastructure. The robots (Figure 10) com-
bine an iRobot platform for navigation with a Crust
Crawler 4-dof arm and use a Vicon system for location
feedback. The setup allowed us to verify the coordina-
tion and computation required by part delivery. Currently,
we have a single type of source component as the screw
in Figure 10. Two delivering robots have performed 20
times of delivery to three assembling robots.

7 Conclusion

We propose a framework for distributed robotic construc-
tion. Robots with specialized tasks (assembly and deliv-
ery of various parts) cover the target structure which is
given by a density function, and perform their tasks with
only local communication. To divide the structure in equally-sized substructures,
the equal-mass partitioning controller is introduced, guaranteeing decay of the cost
function that is the sum of the differences among masses of the neighboring sub-
structures. An intuitive control criteria with probabilistic deployment and a gradient
of the demanding masses is proposed to maintain a balance among the substructures.
Implementation with two kinds of source materials (truss and connector) shows that

16 Seung-kook Yun, Mac Schwager and Daniela Rus

the proposed algorithms assign an equal amount of construction work to the assem-
bling robots, and effectively construct the target structures. This work has opened
many interesting questions which we are pursuing as part of our on-going work. We
are currently expanding the hardware experiment.

1. Goal-driven structure A target structure can be given as an abstract goal such
as connecting two points, not as a density function. In this case, each assembling
robot should make the locally best decision of how to build a partial structure.

2. Connectivity in sub-structure Assembling robots may be constrained to work
only on the truss structure in practice. In this case, connectivity through each
Voronoi region is critical, since a robot may not reach its own region if some part
of the region is separated. We need to incorporate this constraint in distributed
coverage.

Acknowledgements This project has been supported in part by The Boeing Company, the U.S.
National Science Foundation, NSF grant numbers IIS-0513755, IIS-0426838, CNS-0520305,
CNS-0707601, the MAST project, MURI SWARMS project grant number W911NF-05-1-0219,
and Emerging Frontiers in Research and Innovation (EFRI) grant #0735953. Seung-kook Yun is
supported in part by Samsung Scholarship. We are grateful for this support.

References

1. Carrick Detweiler, Marsette Vona, Yeoreum Yoon, Seung-kook Yun, and Daniela Rus. Self-
assembling mobile linkages. IEEE Robotics and Automation Magazine, 14(4):45–55, 2007.

2. J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks.
20(2):243–255, 2004.

3. Seung kook Yun, David Alan Hjelle, Hod Lipson, and Daniela Rus. Planning the reconfigura-
tion of grounded truss structures with truss climbing robots that carry truss elements. In Proc.
of IEEE/RSJ IEEE International Conference on Robotics and Automation, Kobe, Japan, May
2009.

4. Seung kook Yun and Daniela Rus. Optimal distributed planning for self assembly of modular
manipulators. In Proc. of IEEE/RSJ IEEE International Conference on Intelligent Robots and
Systems, pages 1346–1352, Nice, France, Sep 2008.

5. Seung kook Yun and Daniela Rus. Self assembly of modular manipulators with active and
passive modules. In Proc. of IEEE/RSJ IEEE International Conference on Robotics and Au-
tomation, pages 1477–1482, May 2008.

6. MC Nechyba and Y. Xu. Human-robot cooperation in space: SM2 for new spacestation struc-
ture. Robotics & Automation Magazine, IEEE, 2(4):4–11, 1995.

7. Marco Pavone, Emilio Frazzoli, and Francesco Bullo. Distributed algorithms for equitable
partitioning policies: Theory and applications. In IEEE Conference on Decision and Control,
Cancun, Mexico, Dec 2008.

8. L. C. A. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. C. Mesquita, and G. A. S.
Pereira. Simultaneous coverage and tracking (scat) of moving targets with robot networks. In
Proceedings of the Eighth International Workshop on the Algorithmic Foundations of Robotics
(WAFR), Accepted, Guanajuato, Mexico, December 2008.

9. Mac Schwager, Daniela Rus, and Jean-Jacques E. Slotine. Decentralized, adaptive control for
coverage with networked robots. International Journal of Robotics Research, 28(3):357–375,
March 2009.

10. S. Skaff, P. Staritz, and WL Whittaker. Skyworker: Robotics for space assembly, inspection
and maintenance. Space Studies Institute Conference, 2001.

11. Justin Werfel and Radhika Nagpal. International journal of robotics research. Three-
dimensional construction with mobile robots and modular blocks, 3-4(27):463–479, 2008.

